login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346424
Number of partitions of the 2n-multiset {0,...,0,1,2,...,n}.
3
1, 2, 11, 74, 592, 5317, 52902, 572402, 6670707, 83025806, 1096662664, 15292076689, 224145880470, 3440981816071, 55153081768896, 920494136057715, 15959177281931953, 286834809549486462, 5334308665713522860, 102476857445135062727, 2030589375575413246579
OFFSET
0,2
COMMENTS
Also number of factorizations of 2^n * Product_{i=1..n} prime(i+1); a(2) = 11: 2*2*3*5, 3*4*5, 2*5*6, 6*10, 2*3*10, 5*12, 4*15, 2*2*15, 3*20, 2*30, 60.
LINKS
FORMULA
a(n) = A001055(A000079(n)*A070826(n+1)).
a(n) = Sum_{j=0..n} A048993(n,j)*A292508(n,j+1).
a(n) = A346426(n,n).
EXAMPLE
a(0) = 1: {}.
a(1) = 2: 01, 0|1.
a(2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
MAPLE
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
end:
a:= n-> add(S(n, j)*b(n, j), j=0..n):
seq(a(n), n=0..21);
MATHEMATICA
s[n_] := s[n] = Expand[If[n == 0, 1,
x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0,
PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 16 2021
STATUS
approved