OFFSET
0,2
COMMENTS
Also number of factorizations of 2^n * Product_{i=1..n} prime(i+1); a(2) = 11: 2*2*3*5, 3*4*5, 2*5*6, 6*10, 2*3*10, 5*12, 4*15, 2*2*15, 3*20, 2*30, 60.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..509
FORMULA
EXAMPLE
a(0) = 1: {}.
a(1) = 2: 01, 0|1.
a(2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
MAPLE
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
end:
a:= n-> add(S(n, j)*b(n, j), j=0..n):
seq(a(n), n=0..21);
MATHEMATICA
s[n_] := s[n] = Expand[If[n == 0, 1,
x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0,
PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 16 2021
STATUS
approved