login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319743
Row sums of A174158.
3
1, 2, 11, 74, 602, 5452, 53559, 558602, 6106034, 69298580, 811086718, 9740402476, 119550632788, 1495039156600, 19002275811887, 244983878813514, 3198363309664658, 42225545561470084, 563083734161627910, 7576864105285884420, 102790882283750139060, 1404908982711268821720
OFFSET
1,2
LINKS
Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Enumeration of parallelogram polycubes, arXiv:2105.00971 [cs.DM], 2021.
FORMULA
a(n) = Sum_{m=1..n} (binomial(n - 1, m - 1)*binomial(n, m - 1)/m)^2.
a(n) = Sum_{m=1..n} A000290(A007318(n - 1, m - 1)*A007318(n, m - 1)/m).
a(n) = 4F3([1 - n, 1 - n, - n, - n], [1, 2, 2], 1), where F is the generalized hypergeometric function.
From Vaclav Kotesovec, Dec 24 2018: (Start)
Recurrence: n*(n+1)^3*(5*n^2 - 10*n + 4)*a(n) = 2*n*(2*n - 1)*(15*n^4 - 30*n^3 + 7*n^2 + 8*n - 8)*a(n-1) + 4*(n-2)^2*(4*n - 5)*(4*n - 3)*(5*n^2 - 1)*a(n-2).
a(n) ~ 2^(4*n + 1/2) / (Pi^(3/2) * n^(7/2)).
(End)
MAPLE
a := n -> add(binomial(n-1, m-1)^2*binomial(n, m-1)^2/m^2, m = 1 .. n): seq(a(n), n = 1 .. 20)
MATHEMATICA
Table[HypergeometricPFQ[{1-n, 1-n, -n, -n}, {1, 2, 2}, 1], {n, 1, 20}]
PROG
(GAP) List([1..20], n->Sum([1..n], m->(Binomial(n-1, m-1)*Binomial(n, m-1)/m)^2));
(PARI) a(n) = sum(m=1, n, (binomial(n-1, m-1)*binomial(n, m-1)/m)^2);
(Sage) [hypergeometric([-n, -n, -n+1, -n+1], [1, 2, 2], 1).simplify_hypergeometric() for n in (1..25)] # G. C. Greubel, Feb 15 2021
(Magma) [(&+[(Binomial(n-1, j-1)*Binomial(n, j-1)/j)^2 : j in [1..n]]): n in [1..25]]; // G. C. Greubel, Feb 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 23 2018
STATUS
approved