login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A319744
Partial sums of bouncy numbers (A152054).
1
101, 203, 306, 410, 515, 621, 728, 836, 945, 1065, 1186, 1316, 1447, 1579, 1719, 1860, 2002, 2145, 2295, 2446, 2598, 2751, 2905, 3065, 3226, 3388, 3551, 3715, 3880, 4050, 4221, 4393, 4566, 4740, 4915, 5091, 5271, 5452, 5634, 5817, 6001, 6186, 6372, 6559, 6749, 6940, 7132, 7325, 7519
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 101.
a(2) = 101 + 102 = 203.
a(10) = 101 + 102 + 103 + 104 + 105 + 106 + 107 + 108 + 109 + 120 = 1065.
PROG
(Python)
for n in range(50):
a = n
b = 0
c = 0
while a:
if ''.join(sorted(str(b))) != str(b) and ''.join(sorted(str(b)))[::-1] != str(b): c += b; a -= 1
b += 1
print(c)
(Python)
from itertools import count, islice
def A319744_gen(): # generator of terms
c = 0
for n in count(101):
l = len(s:=tuple(int(d) for d in str(n)))
for i in range(1, l-1):
if (s[i-1]-s[i])*(s[i]-s[i+1]) < 0:
c += n
yield c
break
A319744_list = list(islice(A319744_gen(), 30)) # Chai Wah Wu, Jul 28 2023
CROSSREFS
Cf. A152054 (bouncy numbers).
Sequence in context: A138131 A069858 A357033 * A303575 A171798 A067861
KEYWORD
nonn,base
AUTHOR
David F. Marrs, Oct 21 2018
STATUS
approved