OFFSET
1,1
COMMENTS
Includes all the numbers with a single nonunitary divisor. Those with more than one: 12, 18, 24, 45, 54, 60, 112, ...
Supersequence of A064591 (nonunitary perfect numbers).
Ligh & Wall showed that if p, 2p-1 and 2^p-1 are distinct primes (A172461, except for 2), then the following numbers are in the sequence: 6*p^2, p^2*(2p-1), 6*p^2*(2p-1), 2^(p+1)*3*(2^p-1), 2^(p+1)*15*(2^p-1) and 2^(p+1)*(2p-1)*(2^p-1).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Steve Ligh and Charles R. Wall, Functions of Nonunitary Divisors, Fibonacci Quarterly, Vol. 25 (1987), pp. 333-338.
MATHEMATICA
nudiv[n_] := Block[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; nhQ[n_]:= Module[ {divs=nudiv[n]}, Length[divs] > 0 && IntegerQ[HarmonicMean[divs]]]; Select[Range[30000], nhQ]
PROG
(PARI) hm(v) = #v/sum(k=1, #v, 1/v[k]);
vnud(n) = select(x->(gcd(x, n/x)!=1), divisors(n));
isok(n) = iferr(denominator(hm(vnud(n))) == 1, E, 0); \\ Michel Marcus, Oct 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 27 2018
STATUS
approved