OFFSET
0,4
COMMENTS
The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(4) = 10 set multipartitions:
{{1},{2}} {{1},{2,3}} {{1},{2,3,4}}
{{1},{2},{2}} {{1,2},{3,4}}
{{1},{2},{3}} {{1},{1},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{3},{2,3}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q, n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t], O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t], O(x*x^n)))/(1-x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 27 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, May 30 2023
STATUS
approved