The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319749 a(n) is the numerator of the Heron sequence with h(0)=3. 1
 3, 11, 119, 14159, 200477279, 40191139395243839 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The denominator of the Heron sequence is in A319750. The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13). n even: a(n)=A041018((5*2^n-5)/3). n  odd: a(n)=A041018((5*2^n-1)/3). More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1. sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2. hn(n)^2-c(n)*hd(n)^2=4 for n>1. LINKS FORMULA h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1. hn(n+1) = (hn(n)^2+13*hd(n)^2)/2. hd(n+1) = hn(n)*hd(n). A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2). A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2). EXAMPLE A078370(2)=29. hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727; hn(3)=A041046(13)=528527. MAPLE hn:=3:  hd:=1: for n from 1 to 6 do hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2: hd[n]:=hn[n-1]*hd[n-1]:    printf("%5d%40d%40d\n", n, hn[n], hd[n]): end do: CROSSREFS Cf. A041018, A041019, A078370, A010122, A319750, A041046. Sequence in context: A068693 A036930 A198085 * A209107 A015047 A339326 Adjacent sequences:  A319746 A319747 A319748 * A319750 A319751 A319752 KEYWORD nonn AUTHOR Paul Weisenhorn, Sep 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 17:21 EDT 2021. Contains 348065 sequences. (Running on oeis4.)