login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346625
a(0) = 8; for n > 0, a(n) = a(n-1)^2 - 2.
1
8, 62, 3842, 14760962, 217885999165442, 47474308632322991920487055362, 2253809980117057347661794063813616885861274573005652951042
OFFSET
0,1
COMMENTS
For n >= 2, the Fermat number F(n) = 2^(2^n) + 1 is prime if and only if F(n) divides a(2^n-2).
REFERENCES
Kusta Inkeri, Tests for primality, Ann. Acad. Sci. Fenn., A I No. 279 (1960), pp. 1-19.
M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, p. 46.
FORMULA
For n >= 2, a(n) = 2 + Sum_{k=1..2^(n-1)} (-1)^k*64^k*2^(n-1)*binomial(k + 2^(n-1) - 1, 2*k - 1)/k.
a(n) = ceiling(c^(2^n)) where c = 4 + sqrt(15) is the largest root of x^2 - 8*x + 1 = 0.
a(n) = (4 + sqrt(15))^(2^n) + (4 - sqrt(15))^(2^n).
a(n) = 2*T(2^n,4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
sqrt(5/3) = Product_{n >= 0} (1 + 2/a(n)).
2*sqrt(5/3)/3 = Product_{n >= 0} (1 - 1/a(n)).
a(n) = 2*A005828(n).
a(n) = A086903(2^n) = A220337(3*(n+1)).
MATHEMATICA
NestList[#^2 - 2 &, 8, 6]
PROG
(Magma) [8] cat [n eq 1 select 62 else Self(n-1)^2-2: n in [1..6]];
(PARI) {a(n)=if(n<1, 8*(n==0), a(n-1)^2-2)};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved