login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346622
a(n) = card{ x <= n : x odd and omega(x) = 2 }.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16
OFFSET
1,21
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
`if`(n::odd and nops(ifactors(n)[2])=2, 1, 0))
end:
seq(a(n), n=1..87); # Alois P. Heinz, Aug 23 2021
MATHEMATICA
a[n_] := a[n] = If[n==0, 0, a[n-1]+If[OddQ[n] && PrimeNu[n]==2, 1, 0]];
Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Apr 07 2022 *)
nxt[{n_, a_}]:={n+1, If[EvenQ[n]&&PrimeNu[n+1]==2, 1, 0]+a}; NestList[nxt, {1, 0}, 90][[All, 2]] (* Harvey P. Dale, Oct 05 2022 *)
PROG
(Python)
from sympy import primefactors
def A346622(n):
return 0 if n <= 2 else A346622(n-1) + (1 if n % 2 and len(primefactors(n)) == 2 else 0) # Chai Wah Wu, Aug 23 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 23 2021
STATUS
approved