OFFSET
1,1
COMMENTS
If n is odd then a(n) is even.
a(n) exists by Dirichlet's theorem on primes in arithmetic progressions.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
a(13)=4 because 4*13+1=53 is prime but none of 2*13-1,2*13+1,3*13-1,3*13+1 are primes.
MAPLE
f:= proc(m) local k;
for k from 2 by 1+(m mod 2) do
if isprime(k*m-1) or isprime(k*m+1) then return k fi
od
end proc:
map(f, [$1..100]);
MATHEMATICA
a[n_]:=Module[{k=2}, While[Not[PrimeQ[k*n-1]||PrimeQ[k*n+1]], k++]; k];
a/@Range[94] (* Ivan N. Ianakiev, Jul 18 2019 *)
PROG
(PARI) a(n) = my(k=2); while (!isprime(n*k+1) && !isprime(n*k-1), k++); k; \\ Michel Marcus, Jul 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 17 2019
STATUS
approved