login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309120
a(n) is the least k > 1 such that n*k is adjacent to a prime.
2
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6, 3, 6, 5, 2, 2, 2, 2, 4, 2, 2, 2, 4, 5, 4, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 6, 2, 2, 3, 2, 2, 2, 3, 4, 3
OFFSET
1,1
COMMENTS
If n is odd then a(n) is even.
a(n) exists by Dirichlet's theorem on primes in arithmetic progressions.
LINKS
FORMULA
a(A104278(n)) > 2 and a(A147820(n)) = 2. - Ivan N. Ianakiev, Jul 18 2019
EXAMPLE
a(13)=4 because 4*13+1=53 is prime but none of 2*13-1,2*13+1,3*13-1,3*13+1 are primes.
MAPLE
f:= proc(m) local k;
for k from 2 by 1+(m mod 2) do
if isprime(k*m-1) or isprime(k*m+1) then return k fi
od
end proc:
map(f, [$1..100]);
MATHEMATICA
a[n_]:=Module[{k=2}, While[Not[PrimeQ[k*n-1]||PrimeQ[k*n+1]], k++]; k];
a/@Range[94] (* Ivan N. Ianakiev, Jul 18 2019 *)
PROG
(PARI) a(n) = my(k=2); while (!isprime(n*k+1) && !isprime(n*k-1), k++); k; \\ Michel Marcus, Jul 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 17 2019
STATUS
approved