login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309122
Sum of the sizes of all subsets of [n] whose sum is divisible by n.
3
1, 1, 6, 6, 20, 34, 70, 124, 270, 516, 1034, 2060, 4108, 8198, 16440, 32760, 65552, 131142, 262162, 524312, 1048740, 2097162, 4194326, 8388856, 16777300, 33554444, 67109418, 134217764, 268435484, 536872072, 1073741854, 2147483632, 4294969404, 8589934608
OFFSET
1,3
COMMENTS
The bivariate g.f. of array T(n,k) = A267632(n,k) is Sum_{n, k >= 1} T(n,k) * x^n * y^k = -x/(1 - x) - Sum_{s >= 1} (phi(s)/s) * log(1 - x^s + (-x*y)^s). Differentiating w.r.t. y and setting y = 1, we get the g.f. of a(n) = k * Sum_{1 <= k <= n} T(n,k) (see below). - Petros Hadjicostas, Jul 13 2019
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A267632(n,k).
From Petros Hadjicostas, Jul 13 2019: (Start)
G.f.: Sum_{s >= 1} phi(s) * (-x)^(s-1)/(1 - x^s + (-x)^s) = -Sum_{m >= 1} phi(2*m) * x^(2*m-1) + Sum_{m >= 0} phi(2*m+1) * x^(2*m)/(1 - 2*x^(2*m+1)).
a(2*m + 1) = A053636(2*m + 1)/2 = (1/2) * Sum_{d|2*m+1} phi(d) * 2^((2*m+1)/d) for m >= 0.
a(2*m) = -phi(2*m) + A053636(2*m)/2 for m >= 1.
(End)
EXAMPLE
a(5) = 20 = 0 + 1 + 2 + 2 + 3 + 3 + 4 + 5 = |{}| + |{5}| + |{1,4}| + |{2,3}| + |{1,4,5}| + |{2,3,5}| + |{1,2,3,4}| + |{1,2,3,4,5}|.
MAPLE
b:= proc(n, m, s) option remember; `if`(n=0, [`if`(s=0, 1, 0), 0],
b(n-1, m, s) +(g-> g+[0, g[1]])(b(n-1, m, irem(s+n, m))))
end:
a:= proc(n) option remember; forget(b); b(n$2, 0)[2] end:
seq(a(n), n=1..40);
MATHEMATICA
b[n_, m_, s_] := b[n, m, s] = If[n == 0, {If[s == 0, 1, 0], 0},
b[n-1, m, s] + Function[g, g + {0, g[[1]]}][b[n-1, m, Mod[s+n, m]]]];
a[n_] := b[n, n, 0][[2]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 13 2019
STATUS
approved