login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309125
a(n) = n + 2^2 * floor(n/2^2) + 3^2 * floor(n/3^2) + 4^2 * floor(n/4^2) + ...
4
1, 2, 3, 8, 9, 10, 11, 16, 26, 27, 28, 33, 34, 35, 36, 57, 58, 68, 69, 74, 75, 76, 77, 82, 108, 109, 119, 124, 125, 126, 127, 148, 149, 150, 151, 201, 202, 203, 204, 209, 210, 211, 212, 217, 227, 228, 229, 250, 300, 326, 327, 332, 333, 343, 344, 349, 350, 351, 352, 357, 358, 359, 369, 454, 455, 456
OFFSET
1,2
COMMENTS
Partial sums of A035316.
FORMULA
G.f.: (1/(1 - x)) * Sum_{k>=1} k^2 * x^(k^2)/(1 - x^(k^2)).
a(n) ~ zeta(3/2)*n^(3/2)/3 - n/2. - Vaclav Kotesovec, Aug 30 2021
MATHEMATICA
Table[Sum[k^2 Floor[n/k^2], {k, 1, n}], {n, 1, 66}]
nmax = 66; CoefficientList[Series[1/(1 - x) Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n) = sum(k=1, n, k^2*(n\k^2)); \\ Seiichi Manyama, Aug 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 13 2019
STATUS
approved