login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013936
a(n) = Sum_{k=1..n} floor(n/k^2).
14
1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 22, 23, 25, 26, 28, 29, 30, 31, 33, 35, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 66, 67, 70, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 86, 88, 89, 90, 92, 96, 97, 98, 99, 101, 102, 103
OFFSET
1,2
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 24.
FORMULA
a(n) = a(n-1)+A046951(n). Bounded above by n*Pi^2/6: the growth of the differences seems to be roughly proportional to sqrt(n). - Henry Bottomley, Aug 16 2001
Conjecture : limit n ->infinity (Pi^2/6*n-a(n))/sqrt(n) = c = 1.45... - Benoit Cloitre, Jan 10 2003
If lim_{n->infinity} (Pi^2/6*n - a(n)) / sqrt(n) does exist, it converges very slowly. It does appear to be bounded. - Franklin T. Adams-Watters, Nov 17 2006
In fact we have: a(n) = zeta(2)*n+zeta(1/2)*n^(1/2)+O(n^theta) with theta<1/2 and we conjecture that theta=1/4+epsilon is the best possible choice. Also a(n)=sum_{1<=k<=n}floor(sqrt(n/k)). - Benoit Cloitre, Nov 05 2012
G.f.: (1/(1 - x))*Sum_{k>=1} x^(k^2)/(1 - x^(k^2)). - Ilya Gutkovskiy, Feb 11 2017
MAPLE
f := n->sum(floor(n/k^2), k=1..n); [ seq(f(j), j=1..100 ];
MATHEMATICA
Table[Sum[Floor[n/k^2], {k, n}], {n, 80}] (* Harvey P. Dale, Mar 28 2013 *)
PROG
(PARI) a(n)=sum(k=1, sqrtint(n), floor(n/k^2))
CROSSREFS
Cf. A046951.
Sequence in context: A191914 A329898 A145353 * A229992 A076437 A028790
KEYWORD
nonn
STATUS
approved