login
A037462
a(n) = Sum_{i = 0..m} d(i)*8^i, where Sum_{i = 0..m} d(i)*4^i is the base 4 representation of n.
4
0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 64, 65, 66, 67, 72, 73, 74, 75, 80, 81, 82, 83, 88, 89, 90, 91, 128, 129, 130, 131, 136, 137, 138, 139, 144, 145, 146, 147, 152, 153, 154, 155, 192, 193, 194, 195, 200, 201, 202, 203, 208, 209, 210
OFFSET
0,3
LINKS
FORMULA
From Peter Bala, Dec 01 2016: (Start):
a(n) = n + 1/2*Sum_{k >= 1} 8^k*floor(n/4^k). Cf. A037454, A007091 and A102491.
a(0) = 0; a(n) = 8*a(n/4) if n == 0 (mod 4) else a(n) = a(n-1) + 1. (End)
MAPLE
seq(n + (1/2)*add(8^k*floor(n/4^k), k = 1..floor(ln(n)/ln(4))), n = 1..100); # Peter Bala, Dec 01 2016
MATHEMATICA
Table[FromDigits[RealDigits[n, 4], 8], {n, 0, 100}]
(* Clark Kimberling, Aug 14 2012 *)
CROSSREFS
KEYWORD
nonn,base,easy
EXTENSIONS
Offset changed to 0 by Clark Kimberling, Aug 14 2012
STATUS
approved