login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = card{ x <= n : x odd and omega(x) = 2 }.
3

%I #14 Oct 05 2022 13:40:42

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,

%T 4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,9,9,9,9,9,9,10,10,11,11,

%U 11,11,12,12,12,12,12,12,13,13,14,14,14,14,14,14,14,14,15,15,16

%N a(n) = card{ x <= n : x odd and omega(x) = 2 }.

%H Chai Wah Wu, <a href="/A346622/b346622.txt">Table of n, a(n) for n = 1..10000</a>

%p a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+

%p `if`(n::odd and nops(ifactors(n)[2])=2, 1, 0))

%p end:

%p seq(a(n), n=1..87); # _Alois P. Heinz_, Aug 23 2021

%t a[n_] := a[n] = If[n==0, 0, a[n-1]+If[OddQ[n] && PrimeNu[n]==2, 1, 0]];

%t Table[a[n], {n, 1, 87}] (* _Jean-François Alcover_, Apr 07 2022 *)

%t nxt[{n_,a_}]:={n+1,If[EvenQ[n]&&PrimeNu[n+1]==2,1,0]+a}; NestList[nxt,{1,0},90][[All,2]] (* _Harvey P. Dale_, Oct 05 2022 *)

%o (Python)

%o from sympy import primefactors

%o def A346622(n):

%o return 0 if n <= 2 else A346622(n-1) + (1 if n % 2 and len(primefactors(n)) == 2 else 0) # _Chai Wah Wu_, Aug 23 2021

%Y Cf. A007774, A082997, A146167, A346623.

%K nonn

%O 1,21

%A _N. J. A. Sloane_, Aug 23 2021