login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 8; for n > 0, a(n) = a(n-1)^2 - 2.
1

%I #29 Sep 08 2022 08:46:26

%S 8,62,3842,14760962,217885999165442,47474308632322991920487055362,

%T 2253809980117057347661794063813616885861274573005652951042

%N a(0) = 8; for n > 0, a(n) = a(n-1)^2 - 2.

%C For n >= 2, the Fermat number F(n) = 2^(2^n) + 1 is prime if and only if F(n) divides a(2^n-2).

%D Kusta Inkeri, Tests for primality, Ann. Acad. Sci. Fenn., A I No. 279 (1960), pp. 1-19.

%D M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, p. 46.

%H <a href="/index/Aa#AHSL">Index entries for sequences of form a(n+1)=a(n)^2 + ...</a>

%F For n >= 2, a(n) = 2 + Sum_{k=1..2^(n-1)} (-1)^k*64^k*2^(n-1)*binomial(k + 2^(n-1) - 1, 2*k - 1)/k.

%F a(n) = ceiling(c^(2^n)) where c = 4 + sqrt(15) is the largest root of x^2 - 8*x + 1 = 0.

%F a(n) = (4 + sqrt(15))^(2^n) + (4 - sqrt(15))^(2^n).

%F a(n) = 2*T(2^n,4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.

%F sqrt(5/3) = Product_{n >= 0} (1 + 2/a(n)).

%F 2*sqrt(5/3)/3 = Product_{n >= 0} (1 - 1/a(n)).

%F a(n) = 2*A005828(n).

%F a(n) = A086903(2^n) = A220337(3*(n+1)).

%t NestList[#^2 - 2 &, 8, 6]

%o (Magma) [8] cat [n eq 1 select 62 else Self(n-1)^2-2: n in [1..6]];

%o (PARI) {a(n)=if(n<1, 8*(n==0), a(n-1)^2-2)};

%Y Cf. A000215, A086903, A304177.

%K nonn,easy

%O 0,1

%A _Arkadiusz Wesolowski_, Jul 26 2021