OFFSET
0,1
COMMENTS
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
The next term has 115 digits. - Harvey P. Dale, May 25 2018
REFERENCES
Jeffrey Shallit, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10
Anonymous, Fermat's rule for 3-fold perfect numbers [Broken link]
FORMULA
a(n) = A001091(2^n).
From Peter Bala, Nov 11 2012, (Start)
a(n) = (1/2)*((4 + sqrt(15))^(2^n) + (4 - sqrt(15))^(2^n)).
2*sqrt(15)/9 = Product_{n>=0} (1 - 1/(2*a(n))).
sqrt(5/3) = Product_{n>=0} (1 + 1/a(n)).
See A002812 for general properties of the recurrence a(n+1) = 2*a(n)^2 - 1.
(End)
a(n) = T(2^n,4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Feb 01 2017
a(n) = cos(2^n*arccos(4)). - Peter Luschny, Oct 12 2022
MATHEMATICA
NestList[2#^2-1&, 4, 10] (* Harvey P. Dale, May 25 2018 *)
PROG
(PARI) a(n)=if(n<1, 4*(n==0), 2*a(n-1)^2-1)
(PARI) a(n)=if(n<0, 0, subst(poltchebi(2^n), x, 4))
(Magma) [n le 2 select 2^(3*n-1)-n+1 else 2*Self(n-1)^2 - 1: n in [1..10]]; // G. C. Greubel, May 17 2023
(SageMath) [chebyshev_T(2^n, 4) for n in range(11)] # G. C. Greubel, May 17 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved