login
A005828
a(n) = 2*a(n-1)^2 - 1, a(0) = 4, a(1) = 31.
(Formerly M3642)
7
4, 31, 1921, 7380481, 108942999582721, 23737154316161495960243527681, 1126904990058528673830897031906808442930637286502826475521
OFFSET
0,1
COMMENTS
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
The next term has 115 digits. - Harvey P. Dale, May 25 2018
REFERENCES
Jeffrey Shallit, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = A001091(2^n).
From Peter Bala, Nov 11 2012, (Start)
a(n) = (1/2)*((4 + sqrt(15))^(2^n) + (4 - sqrt(15))^(2^n)).
2*sqrt(15)/9 = Product_{n>=0} (1 - 1/(2*a(n))).
sqrt(5/3) = Product_{n>=0} (1 + 1/a(n)).
See A002812 for general properties of the recurrence a(n+1) = 2*a(n)^2 - 1.
(End)
a(n) = T(2^n,4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Feb 01 2017
a(n) = cos(2^n*arccos(4)). - Peter Luschny, Oct 12 2022
MATHEMATICA
NestList[2#^2-1&, 4, 10] (* Harvey P. Dale, May 25 2018 *)
PROG
(PARI) a(n)=if(n<1, 4*(n==0), 2*a(n-1)^2-1)
(PARI) a(n)=if(n<0, 0, subst(poltchebi(2^n), x, 4))
(Magma) [n le 2 select 2^(3*n-1)-n+1 else 2*Self(n-1)^2 - 1: n in [1..10]]; // G. C. Greubel, May 17 2023
(SageMath) [chebyshev_T(2^n, 4) for n in range(11)] # G. C. Greubel, May 17 2023
CROSSREFS
Cf. A001091, A001601, A002812, A084764 (essentially the same).
Sequence in context: A203011 A228467 A005841 * A084764 A376747 A061789
KEYWORD
nonn,easy
STATUS
approved