login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of partitions of all n-multisets {0,...,0,1,2,...,j} into distinct multisets for 0 <= j <= n.
3

%I #18 Jul 31 2021 09:43:41

%S 1,2,5,15,46,161,624,2669,12483,63261,344631,2005058,12390086,

%T 80945545,556896913,4021109557,30382294412,239589006143,1967343509525,

%U 16786587081641,148561276135546,1361378815644787,12897870827339021,126158299918183469,1272377007364596242

%N Total number of partitions of all n-multisets {0,...,0,1,2,...,j} into distinct multisets for 0 <= j <= n.

%C Also total number of factorizations of 2^(n-j) * Product_{i=1..j} prime(i+1) into distinct factors for 0 <= j <= n; a(2) = 5: 4, 2*3, 6, 3*5, 15; a(3) = 15: 2*4, 8, 3*4, 2*6, 12, 2*3*5, 5*6, 3*10, 2*15, 30, 3*5*7, 7*15, 5*21, 3*35, 105.

%H Alois P. Heinz, <a href="/A346521/b346521.txt">Table of n, a(n) for n = 0..576</a>

%F a(n) = Sum_{j=0..n} A346520(n-j,j).

%F a(n) = Sum_{j=0..n} A045778(A000079(n-j)*A070826(j+1)).

%e a(2) = 5: 00, 01, 0|1, 12, 1|2.

%e a(3) = 15: 000, 0|00, 001, 00|1, 0|01, 012, 0|12, 02|1, 01|2, 0|1|2, 123, 1|23, 13|2, 12|3, 1|2|3.

%p g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(

%p `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p s:= proc(n) option remember; expand(`if`(n=0, 1,

%p x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))

%p end:

%p S:= proc(n, k) option remember; coeff(s(n), x, k) end:

%p b:= proc(n, i) option remember; `if`(n=0, 1,

%p `if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))

%p end:

%p A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):

%p a:= n-> add(A(n-j, j), j=0..n):

%p seq(a(n), n=0..24);

%t g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];

%t s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];

%t S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]];

%t A[n_, k_] := Sum[S[k, j]*b[n, j], {j, 0, k}];

%t a[n_] := Sum[A[n - j, j], {j, 0, n}];

%t Table[a[n], {n, 0, 24}] (* _Jean-François Alcover_, Jul 31 2021, after _Alois P. Heinz_ *)

%Y Antidiagonal sums of A346520.

%Y Cf. A000009, A000040, A000079, A000110, A045778, A070826, A346428.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jul 21 2021