login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268658
Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.
10
2, 8, 18, 66, 189, 209, 408, 2208, 2816, 3168, 3912, 20909, 54792, 59973, 157169, 303093, 709968, 801978, 1832496, 2145353, 2291610, 5082306, 10829346, 16408818
OFFSET
1,1
REFERENCES
Wilfrid Keller, private communication, 2008.
LINKS
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=5)
PROG
(PARI) for(k=1, +oo, p=3*2^k+1; if(ispseudoprime(p), t=znorder(Mod(5, p)); bitand(t, t-1)==0&&print1(k, ", "))) \\ Jeppe Stig Nielsen, Oct 30 2020
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
EXTENSIONS
a(24) from Jeppe Stig Nielsen, Oct 30 2020
STATUS
approved