The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226366 Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m. 14
 7, 25, 39, 75, 127, 1947, 3313, 23473, 125413 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No other terms below 5330000. The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019 LINKS Wilfrid Keller, Fermat factoring status J. C. Morehead, Note on the factors of Fermat's numbers, Bull. Amer. Math. Soc., Volume 12, Number 9 (1906), pp. 449-451. Eric Weisstein's World of Mathematics, Fermat Number MATHEMATICA lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst PROG (PARI) isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018 CROSSREFS Subsequence of A002254. Cf. A000215, A050526, A057775, A057778, A201364, A204620. Sequence in context: A110081 A140716 A141393 * A294459 A075927 A119617 Adjacent sequences:  A226363 A226364 A226365 * A226367 A226368 A226369 KEYWORD nonn,hard,more AUTHOR Arkadiusz Wesolowski, Jun 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 15:29 EDT 2020. Contains 335401 sequences. (Running on oeis4.)