|
|
A268664
|
|
Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.
|
|
10
|
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Wilfrid Keller, private communication, 2008.
|
|
LINKS
|
Table of n, a(n) for n=1..6.
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=12)
OEIS Wiki, Generalized Fermat numbers
|
|
CROSSREFS
|
Cf. A152585, A268661, A268662, A268663, A226366, A268657, A268658, A204620, A268659, A268660. Subsequence of A002254.
Sequence in context: A302001 A109018 A237912 * A158697 A295151 A172975
Adjacent sequences: A268661 A268662 A268663 * A268665 A268666 A268667
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Arkadiusz Wesolowski, Feb 10 2016
|
|
STATUS
|
approved
|
|
|
|