login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152585 Generalized Fermat numbers: 12^(2^n) + 1, n >= 0. 13
13, 145, 20737, 429981697, 184884258895036417, 34182189187166852111368841966125057, 1168422057627266461843148138873451659428421700563161428957815831003137 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
There appears to be no divisibility rule for this sequence.
13 is the only prime up to 12^(2^15)+1.
LINKS
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=12).
Wilfrid Keller, GFN12 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 13; a(n)=(a(n-1)-1)^2 + 1, n >= 1.
a(n) = 11*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 11*(empty product, i.e., 1)+ 2 = 13 = a(0). This implies that the terms, all odd, are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/11. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 12^1+1 = 13 = 11(1)+2 = 11(empty product)+2.
a(1) = 12^2+1 = 145 = 11(13)+2.
a(2) = 12^4+1 = 20737 = 11(13*145)+2.
a(3) = 12^8+1 = 429981697 = 11(13*145*20737)+2.
a(4) = 12^16+1 = 184884258895036417 = 11(13*145*20737*429981697)+2.
a(5) = 12^32+1 = 34182189187166852111368841966125057 = 11(13*145*20737*429981697*184884258895036417)+2.
MATHEMATICA
Table[12^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(PARI) g(a, n) = if(a%2, b=2, b=1); for(x=0, n, y=a^(2^x)+b; print1(y", "))
(Magma) [12^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
(Python)
def A152585(n): return (1<<2*(m:=1<<n))*3**m+1 # Chai Wah Wu, Jul 19 2022
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n)+1, n >= 0).
Sequence in context: A270579 A297223 A199023 * A014881 A048442 A353107
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 08 2008
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 12:10 EST 2023. Contains 367710 sequences. (Running on oeis4.)