login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059919
Generalized Fermat numbers: 3^(2^n)+1, n >= 0.
16
4, 10, 82, 6562, 43046722, 1853020188851842, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096962
OFFSET
0,1
COMMENTS
Generalized Fermat numbers (Ribenboim (1996))
F_n(a) := F_n(a,1) = a^(2^n) + 1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for this sequence). - Daniel Forgues, Jun 19-20 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10 (shortened by N. J. A. Sloane, Jan 13 2019)
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=3).
Wilfrid Keller, GFN3 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 4; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = A011764(n)+1 = A059918(n+1)/A059918(n) = (A059917(n+1)-1)/(A059917(n)-1) = (A059723(n)/A059723(n+1))*(A059723(n+2)-A059723(n+1))/(A059723(n+1)-A059723(n))
a(n) = A057727(n)-1. - R. J. Mathar, Apr 23 2007
a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0).
The above formula implies the GCD of any pair of terms is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. - Daniel Forgues, Jun 20 & 22 2011
Sum_{n>=0} 2^n/a(n) = 1/2. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 3^(2^0)+1 = 3^1+1 = 4 = 2*(1)+2 = 2*(empty product)+2;
a(1) = 3^(2^1)+1 = 3^2+1 = 10 = 2*(4)+2;
a(2) = 3^(2^2)+1 = 3^4+1 = 82 = 2*(4*10)+2;
a(3) = 3^(2^3)+1 = 3^8+1 = 6562 = 2*(4*10*82)+2;
a(4) = 3^(2^4)+1 = 3^16+1 = 43046722 = 2*(4*10*82*6562)+2;
a(5) = 3^(2^5)+1 = 3^32+1 = 1853020188851842 = 2*(4*10*82*6562*43046722)+2;
MAPLE
A059919:=n->3^(2^n)+1; seq(A059919(n), n=0..7); # Wesley Ivan Hurt, Jan 22 2014
MATHEMATICA
Table[3^2^n + 1, {n, 0, 7}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(PARI) { for (n=0, 11, write("b059919.txt", n, " ", 3^(2^n) + 1); ) } \\ Harry J. Smith, Jun 30 2009
(Magma) [3^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A059917 ((3^(2^n)+1)/2).
Sequence in context: A171754 A215872 A371021 * A143047 A156329 A266839
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Feb 08 2001
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011 and Jun 20 2011
STATUS
approved