login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152581
Generalized Fermat numbers: a(n) = 8^(2^n) + 1, n >= 0.
9
9, 65, 4097, 16777217, 281474976710657, 79228162514264337593543950337, 6277101735386680763835789423207666416102355444464034512897
OFFSET
0,1
COMMENTS
These numbers are all composite. We rewrite 8^(2^n) + 1 = (2^(2^n))^3 + 1.
Then by the identity a^n + b^n = (a+b)*(a^(n-1) - a^(n-2)*b + ... + b^(n-1)) for odd n, 2^(2^n) + 1 divides 8^(2^n) + 1. All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994)). - Daniel Forgues, Jun 19 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0)=9, a(n) = (a(n-1) - 1)^2 + 1, n >= 1.
Sum_{n>=0} 2^n/a(n) = 1/7. - Amiram Eldar, Oct 03 2022
EXAMPLE
For n = 3, 8^(2^3) + 1 = 16777217. Similarly, (2^8)^3 + 1 = 16777217. Then 2^8 + 1 = 257 and 16777217/257 = 65281.
MATHEMATICA
Table[8^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(PARI) g(a, n) = if(a%2, b=2, b=1); for(x=0, n, y=a^(2^x)+b; print1(y", "))
(Magma) [8^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
(PARI) a(n)=1<<(3*2^n)+1 \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Sequence in context: A100311 A259242 A120286 * A122733 A118465 A279129
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Dec 08 2008
EXTENSIONS
Edited by Daniel Forgues, Jun 19 2011
STATUS
approved