login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.
11

%I #24 Apr 03 2023 10:36:13

%S 6,12,18,30,36,41,66,189,201,209,276,408,438,534,2208,3168,3189,3912,

%T 34350,42294,44685,48150,54792,55182,59973,80190,157169,213321,303093,

%U 382449,709968,801978,916773,1832496,2145353,2291610,2478785,5082306,7033641,10829346

%N Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

%D Wilfrid Keller, private communication, 2008.

%H Jeppe Stig Nielsen, <a href="/A268657/b268657.txt">Table of n, a(n) for n = 1..41</a>

%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446.

%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to “Factors of generalized Fermat numbers”</a>, Math. Comp. 74 (2005), no. 252, p. 2099.

%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866.

%H C. K. Caldwell, Top Twenty page, <a href="https://t5k.org/top20/page.php?id=28">Generalized Fermat Divisors (base=3)</a>

%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>

%o (PARI) for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(3,p));bitand(t,t-1)==0&&print1(k,", "))) \\ _Jeppe Stig Nielsen_, Oct 30 2020

%Y Cf. A059919, A268658, A204620, A268659, A268660, A268661, A268662, A268663, A226366, A268664. Subsequence of A002253.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Feb 10 2016