

A236583


The number of tilings of an 8 X (3n) floor with 2 X 3 hexominoes.


1



1, 1, 4, 11, 33, 96, 281, 821, 2400, 7015, 20505, 59936, 175193, 512089, 1496836, 4375251, 12788857, 37381824, 109267057, 319387565, 933569728, 2728823951, 7976351345, 23314871872, 68149361393
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.


LINKS

Table of n, a(n) for n=0..24.
R. J. Mathar, Paving rectangular regions..., arXiv:1311.6135, Table 51.
R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], eq. (34).
Index entries for linear recurrences with constant coefficients, signature (3,0,1,1).


FORMULA

G.f.: (1+x)^2/(x^3x^4+13*x).


MAPLE

g := (1+x)^2/(x^3x^4+13*x) ;
taylor(%, x=0, 30) ;
gfun[seriestolist](%) ;


CROSSREFS

Cf. A000079 (5 X n floor), A182097 (6 X n floor), A000244 (7 X n floor), A236584 (9 x 2n floor)
Sequence in context: A217860 A143787 A289973 * A282990 A099159 A116394
Adjacent sequences: A236580 A236581 A236582 * A236584 A236585 A236586


KEYWORD

easy,nonn


AUTHOR

R. J. Mathar, Jan 29 2014


STATUS

approved



