login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289973 p-INVERT of the lower Wythoff sequence (A000201), where p(S) = 1 - S. 2
1, 4, 11, 33, 96, 280, 818, 2387, 6970, 20347, 59401, 173414, 506261, 1477968, 4314748, 12596384, 36773617, 107356118, 313413177, 914971789, 2671149257, 7798096555, 22765597881, 66461404174, 194026015382, 566435438933, 1653639620681, 4827600476829 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Table of n, a(n) for n=0..27.

MATHEMATICA

z = 60; r = GoldenRatio; s = Sum[Floor[k*r] x^k, {k, 1, z}]; p = 1 - s;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000201 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1]  (* A289973 *)

CROSSREFS

Cf. A000201, A289974.

Sequence in context: A034745 A217860 A143787 * A236583 A282990 A099159

Adjacent sequences:  A289970 A289971 A289972 * A289974 A289975 A289976

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 22:56 EST 2018. Contains 299427 sequences. (Running on oeis4.)