login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236579
The number of tilings of a 5 X (4n) floor with 1 X 4 tetrominoes.
3
1, 3, 15, 75, 371, 1833, 9057, 44753, 221137, 1092699, 5399327, 26679563, 131831075, 651413681, 3218814561, 15905050017, 78591236385, 388340962771, 1918899743823, 9481812581835, 46852249642771
OFFSET
0,2
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
Related to A002378 by an Invert Transform.
FORMULA
G.f.: (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4).
a(n) = Sum_{k = 0..n} binomial(n + 3*k, 4*k)*2^k = Sum_{k = 0..n} A109960(n,k)*2^k. - Peter Bala, Nov 02 2017
a(n) = hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128). - Peter Luschny, Nov 02 2017
MAPLE
g := (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4) ;
taylor(%, x=0, 30) ; gfun[seriestolist](%) ;
# Alternatively:
a := n -> hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128):
seq(simplify(a(n)), n=0..20); # Peter Luschny, Nov 02 2017
MATHEMATICA
LinearRecurrence[{6, -6, 4, -1}, {1, 3, 15, 75}, 21] (* Jean-François Alcover, Jul 14 2018 *)
CROSSREFS
Cf. A003269 (4Xn floor), A236580 - A236582, A109960.
Sequence in context: A151326 A063000 A002902 * A005053 A329764 A183411
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved