The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236577 The number of tilings of a 6 X n floor with 1 X 3 trominoes. 5
 1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 21. R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], 2014, eq (14). Index entries for linear recurrences with constant coefficients, signature (1,1,7,-1,-5,-10,-1,3,5,1,-1,-1). FORMULA G.f.: See the definition of g in the Maple code. MAPLE g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ; taylor(%, x=0, 30) ; gfun[seriestolist](%) ; MATHEMATICA CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *) PROG (PARI) x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017 CROSSREFS Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578. Column k=3 of A250662. Cf. A251073. Sequence in context: A054311 A183452 A323423 * A356091 A359351 A293504 Adjacent sequences: A236574 A236575 A236576 * A236578 A236579 A236580 KEYWORD nonn,easy AUTHOR R. J. Mathar, Jan 29 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:49 EST 2023. Contains 367616 sequences. (Running on oeis4.)