login
A261330
Euler transform of Pell-Lucas numbers.
4
1, 2, 9, 30, 106, 348, 1153, 3698, 11798, 37034, 115294, 355202, 1086080, 3294912, 9931019, 29745296, 88597104, 262508288, 774073787, 2272321666, 6642701371, 19342768210, 56117550874, 162247236638, 467563212923, 1343273262184, 3847866714452, 10991864363660
OFFSET
0,2
LINKS
Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
Eric Weisstein's World of Mathematics, Pell Number
Wikipedia, Pell number
FORMULA
G.f.: Product_{k>=1} 1/(1-x^k)^(A002203(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = 0.40371233206538058741995064489690066306587648488344483...
MATHEMATICA
nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 15 2015
STATUS
approved