OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
FORMULA
a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = 0.9799662013576411396292209835034813778512885279062665867878344706... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 07 2015
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018
MAPLE
L:= proc(n) option remember; `if`(n<2, 2-n, L(n-2)+L(n-1)) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
L(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 12 2017
MATHEMATICA
CoefficientList[Series[Product[1/(1 - x^k)^LucasL[k], {k, 1, 30}], {x, 0, 30}], x]
PROG
(SageMath) # uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(1, 1, 2)
b = EulerTransform(a)
print([b(n) for n in range(34)]) # Peter Luschny, Nov 11 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 07 2015
STATUS
approved