login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261031
Euler transform of Lucas numbers.
7
1, 1, 4, 8, 21, 44, 103, 217, 477, 999, 2116, 4373, 9055, 18464, 37576, 75725, 152047, 303158, 602085, 1189242, 2340065, 4584027, 8947865, 17399906, 33725509, 65153150, 125493914, 241011287, 461611911, 881806114, 1680336592, 3194346093, 6058770147, 11466709780
OFFSET
0,3
LINKS
FORMULA
a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = 0.9799662013576411396292209835034813778512885279062665867878344706... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 07 2015
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018
MAPLE
L:= proc(n) option remember; `if`(n<2, 2-n, L(n-2)+L(n-1)) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
L(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 12 2017
MATHEMATICA
CoefficientList[Series[Product[1/(1 - x^k)^LucasL[k], {k, 1, 30}], {x, 0, 30}], x]
PROG
(SageMath) # uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(1, 1, 2)
b = EulerTransform(a)
print([b(n) for n in range(34)]) # Peter Luschny, Nov 11 2020
CROSSREFS
Sequence in context: A061256 A180608 A244583 * A077921 A097076 A003608
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 07 2015
STATUS
approved