This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261031 Euler transform of Lucas numbers. 5
 1, 1, 4, 8, 21, 44, 103, 217, 477, 999, 2116, 4373, 9055, 18464, 37576, 75725, 152047, 303158, 602085, 1189242, 2340065, 4584027, 8947865, 17399906, 33725509, 65153150, 125493914, 241011287, 461611911, 881806114, 1680336592, 3194346093, 6058770147, 11466709780 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..2000 FORMULA a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = 0.9799662013576411396292209835034813778512885279062665867878344706... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 07 2015 G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018 MAPLE L:= proc(n) option remember; `if`(n<2, 2-n, L(n-2)+L(n-1)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d*       L(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..40);  # Alois P. Heinz, Jan 12 2017 MATHEMATICA CoefficientList[Series[Product[1/(1 - x^k)^LucasL[k], {k, 1, 30}], {x, 0, 30}], x] CROSSREFS Cf. A000032, A166861. Sequence in context: A061256 A180608 A244583 * A077921 A097076 A003608 Adjacent sequences:  A261028 A261029 A261030 * A261032 A261033 A261034 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 07 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 23:44 EST 2019. Contains 319206 sequences. (Running on oeis4.)