login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261028
Decimal expansion of Cl_2(5*Pi/6), where Cl_2 is the Clausen function of order 2.
7
3, 5, 6, 9, 0, 8, 3, 2, 7, 8, 4, 9, 0, 6, 5, 9, 3, 7, 1, 1, 4, 4, 3, 5, 0, 3, 8, 0, 5, 2, 9, 5, 9, 3, 3, 5, 6, 9, 7, 3, 4, 3, 9, 2, 2, 6, 3, 8, 5, 3, 9, 8, 0, 8, 1, 7, 3, 2, 9, 3, 1, 3, 6, 3, 8, 7, 0, 2, 5, 9, 7, 7, 4, 5, 2, 9, 4, 2, 1, 7, 4, 1, 1, 8, 7, 8, 6, 7, 5, 3, 3, 9, 3, 6, 7, 9, 2, 3, 0, 4, 2, 9, 2, 5
OFFSET
0,1
LINKS
Eric Weisstein's MathWorld, Clausen Function
Eric Weisstein's MathWorld, Clausen's Integral
Eric Weisstein's MathWorld, Barnes G-Function
Wikipedia, Clausen function
FORMULA
Equals 2*Pi*log(G(7/12)/G(5/12)) - 2*Pi*LogGamma(5/12) + (5*Pi/6) * log(2*Pi*sqrt(2)/(sqrt(3)+1)), where G is the Barnes G function.
EXAMPLE
0.356908327849065937114435038052959335697343922638539808173...
MATHEMATICA
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[5*Pi/6] // Re, 10, 104] // First
CROSSREFS
Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)).
Sequence in context: A335110 A152989 A308051 * A195481 A199730 A016612
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved