login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A261026
Decimal expansion of Cl_2(3*Pi/4), where Cl_2 is the Clausen function of order 2.
6
5, 2, 3, 8, 8, 9, 3, 5, 3, 9, 6, 1, 5, 9, 3, 8, 4, 9, 1, 9, 0, 6, 2, 2, 7, 8, 5, 5, 9, 4, 0, 0, 3, 6, 1, 1, 7, 4, 3, 7, 1, 6, 2, 8, 4, 5, 1, 9, 8, 9, 4, 3, 9, 4, 4, 4, 3, 3, 6, 4, 0, 7, 4, 8, 4, 2, 2, 7, 4, 1, 5, 5, 1, 6, 1, 6, 4, 2, 2, 5, 1, 4, 8, 5, 2, 2, 4, 5, 4, 6, 4, 2, 1, 3, 3, 0, 1, 7, 0, 9, 9, 9, 7, 0, 9
OFFSET
0,1
LINKS
Eric Weisstein's MathWorld, Clausen Function
Eric Weisstein's MathWorld, Clausen's Integral
Eric Weisstein's MathWorld, Barnes G-Function
Wikipedia, Clausen function
FORMULA
Equals 2*Pi*log(G(5/8)/G(3/8)) - 2*Pi*LogGamma(3/8) + (3*Pi/4) * log(2*Pi/sqrt(2+sqrt(2))), where G is the Barnes G function.
EXAMPLE
0.52388935396159384919062278559400361174371628451989439444336407484...
MATHEMATICA
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[3*Pi/4] // Re, 10, 105] // First
CROSSREFS
Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).
Sequence in context: A176319 A376913 A377088 * A378714 A160080 A026247
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved