OFFSET
1,1
COMMENTS
For any prime k <= p^2. In fact if k = p^2 we have that sigma(p) = sigma(p^2) - p^2, that is 1 + p = 1 + p + p^2 - p^2.
LINKS
Robert Israel and Paolo P. Lava, Table of n, a(n) for n = 1..1229 (first 100 from Paolo P. Lava)
FORMULA
EXAMPLE
sigma(2) = 3 and 4 is the least number such that sigma(4) - 4 = 7 - 4 = 3.
sigma(13) = 14 and 22 is the least number such that sigma(22) - 22 = 36 - 22 = 14.
MAPLE
with(numtheory): P:=proc(q) local a, k, n; for n from 1 to q do
if isprime(n) then for k from 1 to q do
if sigma(n)=sigma(k)-k then print(k); break; fi; od;
fi; od; end: P(10^9);
MATHEMATICA
Table[k = 1; While[DivisorSigma[1, Prime@ p] != DivisorSigma[1, k] - k, k++]; k, {p, 60}] (* Michael De Vlieger, Aug 07 2015 *)
PROG
(PARI) a(n) = my(k = 1, p = prime(n)); while(sigma(k)-k-1 != p, k++); k; \\ Michel Marcus, Aug 12 2015
(PARI) first(m)=my(v=vector(m), k); for(i=1, m, k=1; while(!(prime(i)==sigma(k)-k-1), k++); v[i]=k; ); v; \\ Anders Hellström, Aug 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Aug 07 2015
STATUS
approved