login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261022
Numbers that are the sum of 2 successive primes and also twice the sum of 2 lesser successive primes.
1
24, 36, 60, 84, 120, 240, 276, 288, 372, 396, 480, 576, 600, 924, 1064, 1200, 1236, 1392, 1620, 1656, 1764, 1848, 2088, 2240, 2280, 2440, 2460, 2580, 2640, 2856, 2964, 3240, 3264, 3336, 3444, 3756, 4044, 4176, 4224, 4828, 4860, 5280, 5376, 5940, 6300, 6480, 6660
OFFSET
1,1
COMMENTS
Terms in A001043 that are twice some lesser term. Numbers m such that both m and m/2 are terms in A001043.
LINKS
Zak Seidov and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Seidov)
EXAMPLE
a(1)=24 because 24=A001043(5)=2*A001043(3), or 11+13=2*(5+7),
a(10)=396 because 396=A001043(45)=2*A001043(25), or 197+199=2*(97+101),
a(100)=16020 because 16020=A001043(1008)=2*A001043(552), or 8009+8011=2*(4003+4007),
a(1000)=324804 because 324804=A001043(14877)=2*A001043(7948), or 162391+162413=2*(81199+81203).
MATHEMATICA
Module[{pr=Prime[Range[500]], p1, p2}, p1=Total/@Partition[pr, 2, 1]; p2=2p1; Intersection[p1, p2]] (* Harvey P. Dale, May 07 2019 *)
PROG
(PARI) p=3; forprime(q=5, 1e4, t=p+q; if(t%4==0 && nextprime(t/4+1)+precprime(t/4) == t/2, print1(t", ")); p=q) \\ Charles R Greathouse IV, Aug 07 2015
CROSSREFS
Cf. A001043.
Sequence in context: A038530 A262428 A281925 * A179152 A193069 A347422
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 07 2015
STATUS
approved