login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308051
Decimal expansion of lim_{m->oo} (sqrt(log(m))/m^2) Sum_{k=1..m} sigma(k)/d(k), where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).
0
3, 5, 6, 9, 0, 4, 9, 6, 5, 2, 4, 9, 9, 5, 7, 0, 7, 6, 1, 2, 2, 0, 0, 5, 3, 0, 2, 0, 1, 3, 9, 9, 6, 4, 5, 9, 1, 3, 6, 0, 6, 6, 6, 8, 2, 6, 2, 5, 7, 3, 8, 4, 4, 2, 9, 6, 8, 7, 8, 8, 0, 2, 0, 1, 2, 7, 7, 4, 3, 4, 4, 2, 1, 4, 1, 8, 7, 2, 1, 3, 8, 5, 5, 3, 2, 1, 5
OFFSET
0,1
LINKS
Paul T. Bateman, Paul Erdös, Carl Pomerance, and E. G. Straus, The arithmetic mean of the divisors of an integer, in: Marvin I. Knopp (ed.), Analytic Number Theory, Proceedings of a Conference Held at Temple University, Philadelphia, May 12-15, 1980, Lecture Notes in Mathematics, Vol 899, Springer, Berlin, Heidelberg, 1981, pp. 197-220, alternative link.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 162.
FORMULA
Equals (1/(2*sqrt(Pi))) * Product_{p prime} p^(3/2) * log(1 + 1/p) / sqrt(p-1).
EXAMPLE
0.35690496524995707612200530201399645913606668262573...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; f[x_] := Log[1 + x]/x/Sqrt[1 - x]; c = Rest[CoefficientList[Series[Log[f[x]], {x, 0, m}], x]]; RealDigits[(1/2/ Sqrt[Pi])*Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 10 2019
STATUS
approved