|
|
A261033
|
|
Values of n such that A002110(n) - A007504(n) - 1 is a prime number.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Values of n such that difference between product of first n+1 terms of A008578 and sum of first n+1 terms of A008578 is a prime number.
Initial primes of the form A002110(n) - A007504(n) - 1 are 19, 2281, 510451.
|
|
LINKS
|
Table of n, a(n) for n=1..5.
|
|
EXAMPLE
|
a(1) = 3 because (2*3*5) - (2+3+5) - 1 = 19 is prime.
a(2) = 5 because (2*3*5*7*11) - (2+3+5+7+11) - 1 = 2281 is prime.
a(3) = 7 because (2*3*5*7*11*13*17) - (2+3+5+7+11+13+17) - 1 = 510451 is prime.
|
|
PROG
|
(PARI) for(n=1, 1e5, if(ispseudoprime(prod(k=1, n, prime(k)) - sum(k=1, n, prime(k)) - 1), print1(n, ", ")));
|
|
CROSSREFS
|
Cf. A002110, A007504, A008578, A014284.
Sequence in context: A349828 A096231 A100432 * A145341 A121388 A161700
Adjacent sequences: A261030 A261031 A261032 * A261034 A261035 A261036
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Altug Alkan, Nov 18 2015
|
|
STATUS
|
approved
|
|
|
|