OFFSET
0,5
COMMENTS
The number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) if the smallest part of the overpartition is odd then it is overlined.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, Overpartitions with restricted odd differences, Electron. J. Combin. 22 (2015), no.3, paper 3.17.
FORMULA
G.f.: Product_{n >= 1} (1+q^(3*n))/(1+q^n)^3 * (1 + 2*Sum_{n >= 1} q^(n(n+1)/2)*(1+q)^2(1+q^2)^2...(1+q^(n-1))^2*(1+q^n)/((1+q^3)(1+q^6)...(1+q^(3*n))).
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2 * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Jun 12 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Jeremy Lovejoy, Aug 07 2015
STATUS
approved