Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 25 2023 08:58:29
%S 1,2,7,26,86,318,1165,4312,16318,62020,238165,921980,3590145,14067188,
%T 55399442,219172028,870736366,3472155062,13892694747,55759406580,
%U 224427809830,905659181212,3663475842865,14851965523630,60334690089827,245572722474460,1001306332164918
%N Expansion of g.f. A(x) satisfying 3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-2))^(n+1).
%H Paul D. Hanna, <a href="/A363108/b363108.txt">Table of n, a(n) for n = 0..300</a>
%F G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
%F (1) 3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-2))^(n+1).
%F (2) 3 = Sum_{n=-oo..+oo} (-1)^n * x^(4*n) * (3*A(x) + x^(n-1))^n.
%F (3) 3*x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+2))^(n-1).
%F (4) 3*x^2 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+2))^(n+1).
%F (5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-2))^n.
%F (6) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(3*n-2) * (3*A(x) + x^(n-2))^(n-1).
%F (7) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^(n+2))^(n+1).
%F (8) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-1))^n.
%F (9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+2))^n.
%e G.f.: A(x) = 1 + 2*x + 7*x^2 + 26*x^3 + 86*x^4 + 318*x^5 + 1165*x^6 + 4312*x^7 + 16318*x^8 + 62020*x^9 + 238165*x^10 + 921980*x^11 + 3590145*x^12 + ...
%o (PARI) {a(n) = my(A=[1], y=3); for(i=1, n, A = concat(A, 0);
%o A[#A] = polcoeff(y - sum(n=-#A, #A, (-1)^n * x^(2*n) * (y*Ser(A) + x^(n-2))^(n+1) )/y, #A-1, x) ); A[n+1]}
%o for(n=0, 30, print1( a(n), ", "))
%o (PARI) {a(n) = my(A=1, y=3); for(i=1, n,
%o A = 1/sum(m=-n,n, (-1)^m * x^(2*m) * (y*A + x^(m-2) + x*O(x^n) )^m ) );
%o polcoeff( A, n, x)}
%o for(n=0, 30, print1( a(n), ", "))
%Y Cf. A359713, A363106, A363107, A363109.
%K nonn
%O 0,2
%A _Paul D. Hanna_, May 24 2023