login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008794 Squares repeated; a(n) = floor(n/2)^2. 32
0, 0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25, 36, 36, 49, 49, 64, 64, 81, 81, 100, 100, 121, 121, 144, 144, 169, 169, 196, 196, 225, 225, 256, 256, 289, 289, 324, 324, 361, 361, 400, 400, 441, 441, 484, 484, 529, 529, 576, 576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Also number of non-attacking kings on n-1 X n-1 board (cf. A030978). - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002

Also the independence number and clique covering number of the (n-1) X (n-1) king graph. - Eric W. Weisstein, Jun 20 2017

Maximum number of 2 X 2 tiles that fit on an n X n board. - Jon Perry, Aug 10 2003

(n)-(1) + (n-1)-(2) + (n-3)-(3) + ... + (n-r)-(r) ... n terms. E.g., 5-1+4-2+3 = 9, 6-1+5-2+4-3 = 9, 7-1+6-2+5-3+4 = 16, 8-1+7-2+6-3+5-4 = 16. - Amarnath Murthy, Jul 24 2005

The smallest possible number of white cells in a solution to an n X n nurikabe grid. - Tanya Khovanova, Feb 24 2009

(1 + x + 4*x^2 + 4*x^3 + 9*x^4 + ...) = (1/(1-x))*(1 + 3*x^2 + 5*x^4 + 7*x^6 + ...). - Gary W. Adamson, Apr 07 2010

If the set {1,2,...,n} is divided in half (a part having size ceiling(n/2) and the rest), then a(2018n+1) is the largest possible difference between the totals of these parts. - Vladimir Shevelev, Oct 14 2017

a(n+1) is the sum of the smallest parts of the partitions of 2n into two odd parts. - Wesley Ivan Hurt, Dec 06 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, Clique Covering Number

Eric Weisstein's World of Mathematics, King Graph

Eric Weisstein's World of Mathematics, Kings Problem.

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

G.f.: x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2).

a(n) = floor(n/2)^2.

From Paul Barry, May 31 2003: (Start)

a(n) = (2*n - 1)*(-1)^n/8 + (2*n^2 - 2*n + 1)/8.

a(n+1) = Sum_{k=0..n} k*(1-(-1)^k)/2. (End)

a(n) = ( sqrt( Sum_{j=0..n} (j+1)*(cos(j*Pi) + 1)/2 ) - 1 )^2. - Paolo P. Lava, Dec 04 2006

a(n+2) = Sum_{k=0..n} A109613(k)*A059841(n-k). - Reinhard Zumkeller, Dec 05 2009

a(n) = A182579(n,n-2) for n > 1. - Reinhard Zumkeller, May 07 2012

3*a(n) = A032766(n)^2 - A032766(n^2). - Bruno Berselli, Oct 21 2016

a(n) = Sum_{i=1..n-1; i odd} i. - Olivier Pirson, Nov 06 2017

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n > 4. - Iain Fox, Dec 08 2017

E.g.f.: (1/4)*(-x*cosh(x) + x^2*cosh(x) + sinh(x) + x*sinh(x) + x^2*sinh(x)). - Stefano Spezia, Oct 07 2018

MAPLE

A008794:=n->floor(n/2)^2: seq(A008794(n), n=0..100); # Wesley Ivan Hurt, Dec 08 2017

MATHEMATICA

With[{sq = Range[0, 30]^2}, Riffle[sq, sq]] (* Harvey P. Dale, Nov 20 2015 *)

Table[Floor[n/2]^2, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)

Table[(2 n - 1) (-1)^n/8 + (2 n^2 - 2 n + 1)/8, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)

CoefficientList[Series[x^2*(1 + x^2)/((1 - x) (1 - x^2)^2), {x, 0, 49}], x] (* Michael De Vlieger, Oct 21 2016 *)

CoefficientList[Series[1/4 (-x Cosh[x] + x^2 Cosh[x] + Sinh[x] + x Sinh[x] + x^2 Sinh[x]), {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Oct 07 2018 *)

PROG

(MAGMA) [(2*n-1)*(-1)^n/8+(2*n^2-2*n +1)/8: n in [0..60]]; // Vincenzo Librandi, Aug 21 2011

(PARI) a(n)=(n\2)^2 \\ Charles R Greathouse IV, Sep 24 2015

(PARI) first(n) = Vec(x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2) + O(x^n), -n) \\ Iain Fox, Dec 08 2017

(GAP) Flat(List([0..24], n->[n^2, n^2])); # Muniru A Asiru, Oct 09 2018

CROSSREFS

Cf. A030978, A032766, A059841, A086832, A109613, A182579, A189889.

Sequence in context: A206919 A168039 A145445 * A075709 A238629 A192032

Adjacent sequences:  A008791 A008792 A008793 * A008795 A008796 A008797

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 01:24 EDT 2018. Contains 316431 sequences. (Running on oeis4.)