login
A008795
Molien series for 3-dimensional representation of dihedral group D_6 of order 6.
21
1, 0, 3, 1, 6, 3, 10, 6, 15, 10, 21, 15, 28, 21, 36, 28, 45, 36, 55, 45, 66, 55, 78, 66, 91, 78, 105, 91, 120, 105, 136, 120, 153, 136, 171, 153, 190, 171, 210, 190, 231, 210, 253, 231, 276, 253, 300, 276, 325, 300, 351, 325, 378, 351, 406, 378, 435, 406, 465, 435, 496, 465, 528, 496
OFFSET
0,3
COMMENTS
a(n-3) is the number of ordered triples of positive integers which are the side lengths of a nondegenerate triangle of perimeter n. - Rob Pratt, Jul 12 2004
a(n) is the number of ways to distribute n identical objects into 3 distinguishable bins so that no bin contains an absolute majority of objects. - Geoffrey Critzer, Mar 17 2010
From Omar E. Pol, Feb 05 2012 (Start:)
Also terms of A000217 and A000217-shifted interleaved.
Also 0 together with this sequence give the first row of the square array A194801. (End)
a(n) is the number of coins left after packing 3-curves coins patterns into fountain of coins base n. Refer to A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". See illustration in links. - Kival Ngaokrajang, Oct 12 2013
FORMULA
The signed version with g.f. (1-x^3)/(1-x^2)^3 is the inverse binomial transform of A084861. - Paul Barry, Jun 12 2003
a(n) = binomial(n/2+2, 2) for n even, binomial((n+1)/2, 2) for n odd. - Rob Pratt, Jul 12 2004
From Paul Barry, Jul 29 2004: (Start)
a(n-2) interleaves n(n+1)/2 and n(n-1)/2.
G.f.: (1-x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (2*n^2 + 6*n + 7 + 3*(2*n+3)*(-1)^n)/16. (End)
a(n) = n*(n+1)/2, n = +- 1, +- 2... - Omar E. Pol, Feb 05 2012
From Michael Somos, Feb 01 2018: (Start)
Euler transform of length 6 sequence [0, 3, 1, 0, 0, -1].
G.f.: (1 + x^3) / (1 - x^2)^3.
a(n) = a(-3-n) for all in Z. (End)
MAPLE
a:= n-> binomial(n/2+2-3*irem(n, 2)/2, 2):
seq(a(n), n=0..70); # Muniru A Asiru, Feb 01 2018
MATHEMATICA
Table[If[EvenQ[n], Binomial[n/2+2, 2], Binomial[(n+1)/2, 2]], {n, 0, 70}]
CoefficientList[Series[(1+x^3)/(1-x^2)^3, {x, 0, 70}], x] (* Robert G. Wilson v, Feb 05 2012 *)
a[ n_]:= Binomial[ Quotient[n, 2] + 2 - Mod[n, 2], 2]; (* Michael Somos, Feb 01 2018 *)
a[ n_]:= With[ {m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ (1 - x + x^2) / ((1 - x)^3 (1 + x)^2), {x, 0, m}]]; (* Michael Somos, Feb 01 2018 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 0, 3, 1, 6}, 70] (* Robert G. Wilson v, Feb 01 2018 *)
PROG
(Magma) [(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16: n in [0..70] ]; // Vincenzo Librandi, Aug 21 2011
(PARI) a(n)=(2*n^2+6*n+7)/16+3*(2*n+3)*(-1)^n/16 \\ Charles R Greathouse IV, Oct 22 2015
(PARI) {a(n) = binomial(n\2 + 2 - n%2, 2)}; /* Michael Somos, Feb 01 2018 */
(GAP) a := [1, 0, 3, 1, 6];; for n in [6..70] do a[n] := a[n-1] + 2*a[n-2] -2*a[n-3] -a[n-4] +a[n-5]; od; a; # Muniru A Asiru, Feb 01 2018
(Sage) [(2*n^2 +6*n +7 +3*(2*n+3)*(-1)^n)/16 for n in (0..70)] # G. C. Greubel, Sep 11 2019
CROSSREFS
Cf. A005044.
First differences of A053307.
Sequence in context: A353924 A226132 A121443 * A165188 A294778 A132180
KEYWORD
nonn,easy
EXTENSIONS
Definition clarified by N. J. A. Sloane, Feb 02 2018
STATUS
approved