login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226132
Expansion of - c(-q) * c(q^2) / 9 in powers of q where c() is a cubic AGM theta function.
2
1, -1, 3, -1, 6, -3, 8, -1, 9, -6, 12, -3, 14, -8, 18, -1, 18, -9, 20, -6, 24, -12, 24, -3, 31, -14, 27, -8, 30, -18, 32, -1, 36, -18, 48, -9, 38, -20, 42, -6, 42, -24, 44, -12, 54, -24, 48, -3, 57, -31, 54, -14, 54, -27, 72, -8, 60, -30, 60, -18, 62, -32, 72
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 91 of the 126 eta-quotients listed in Table 1 of Williams 2012.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
FORMULA
Expansion of (a(q) - a(q^2)) * (a(q^2) + 2 * a(q^4)) / 18 = c(q^2)^4 / (9 * c(q) * c(q^4)) = (b(-q) * b(q^2) - a(-q) * a(q^2)) / 9 in powers of q where a(), b(), c(q) are cubic AGM theta functions.
Expansion of q * (phi(q^3)^3 / phi(q)) * (ps(-q^3)^3 / psi(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^4) * eta(q^6)^12 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^12)^3) in powers of q.
Euler transform of period 12 sequence [ -1, 3, 2, 2, -1, -6, -1, 2, 2, 3, -1, -4, ...].
Multiplicative with a(2^e) = -1 if e>0, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4/3 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226139.
G.f.: Sum_{k>0 not 3|k} x^k / (1 - (-x)^k)^2 = Sum_{k>0 not 2|k} k * x^k * (1 - x^k) / (1 + x^(3*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(4*k)) * (1 - x^(3*k))^6 * (1 + x^(3*k))^9 / ((1 - x^(2*k))^4 * (1 + x^(6*k))^3).
a(2*n) = - A121443(n). a(2*n + 1) = A185717(n).
a(n) = -(-1)^n * A121443(n). Convolution of A113447 and A113973.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(s-1))^2 * (1 - 1/3^s) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/54 = 0.18277045... . (End)
EXAMPLE
G.f. = q - q^2 + 3*q^3 - q^4 + 6*q^5 - 3*q^6 + 8*q^7 - q^8 + 9*q^9 - 6*q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ If[ OddQ[d] && ! Divisible[ n/d, 3], -d (-1)^(n/d), 0], {d, Divisors[ n]}]];
a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ # == 2, -1, # == 3, #^#2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[n])];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^3 / EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, I q^(3/2)]^3 / EllipticTheta[ 2, 0, I q^(1/2)] / (4 (-1)^(1/4)), {q, 0, n}];
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, if(d%2 && (n/d)%3, -d * (-1)^(n/d))))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k= 1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -1, if( p==3, p^e, (p^(e+1) - 1) / (p - 1))))))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^12 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^3), n))};
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, May 27 2013
STATUS
approved