login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113447
Expansion of i * theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.
7
1, 1, 1, -1, 0, 1, 2, 1, 1, 0, 0, -1, 2, 2, 0, -1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, -2, 0, 0, 2, 1, 0, 0, 0, -1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, -1, 3, 1, 0, -2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, -1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, -2, 0, 2, 2, 0, 1, 0, 0, -2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, -1, 0, 0, 2, 2, 0
OFFSET
1,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Li-Chien Shen, On the Modular Equations of Degree 3, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1101-1114. See p. 1105, equation (3.8).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2) * eta(q^3)^3 * eta(q^12)^3) / (eta(q) * eta(q^4) * eta(q^6)^3) in powers of q.
Euler transform of period 12 sequence [1, 0, -2, 1, 1, 0, 1, 1, -2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0, ...].
a(n) is multiplicative and a(2^e) = -(-1)^e if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(6*k - 5) / (1 - x^(6*k - 5)) - x^(6*k - 1) / (1 - x^(6*k - 1)) - 2 * x^(12*k - 8) / (1 - x^(12*k - 8)) + 2 * x^(12*k - 4) / (1 - x^(12*k-4)).
G.f.: Sum_{k>0} x^k * (1 - x^(3*k))^2 / (1 + x^(4*k) + x^(8*k)).
G.f.: x * Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)) * ((1 - x^(12*k - 6)) / (1 - x^(3*k)))^3.
Expansion of theta_2(i * q^3)^3 / (4 * theta_2(i * q)) in powers of q^2.
Expansion of q * psi(-q^3)^3 / psi(-q) in powers of q where psi() is a Ramanujan theta function.
Expansion of (c(q) * c(q^4)) / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (4/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A132973.
a(n) = -(-1)^n * A093829(n). - Michael Somos, Jan 31 2015
Convolution inverse of A133637.
a(3*n) = a(n). a(6*n + 5) = a(12*n + 10) = 0. |a(n)| = A035178(n).
a(2*n) = A093829(n). a(2*n + 1) = A033762(n).
a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 6) = A112605(n). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A121963(n). a(24*n + 19) = 2 * A131964(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = q + q^2 + q^3 - q^4 + q^6 + 2*q^7 + q^8 + q^9 - q^12 + 2*q^13 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^max( 1, valuation( n, 2)) * sumdiv(n, d, kronecker( -12, d)))};
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, if( p==2, 1 + X / (1 + X), 1 / ((1 - X) * (1 - kronecker( -12, p) * X))))[n])};
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^3), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 0, -2, -1, 0, 1, 2, 0, 0, -1][d%12 + 1]))}; /* Michael Somos, May 07 2015 */
(Magma) A := Basis( ModularForms( Gamma1(24), 1), 106); A[2] + A[3] + A[4] - A[5] + A[7] + 2*A[8] + A[9] + A[10]; /* Michael Somos, May 07 2015 */
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Nov 02 2005
STATUS
approved