login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113444
a(n) = a(n-1) + Sum_{0<k<=n/5} a(n-5k) with a(0)=1.
4
1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 13, 18, 24, 31, 43, 60, 83, 113, 151, 206, 283, 389, 532, 721, 982, 1342, 1837, 2512, 3422, 4665, 6367, 8699, 11886, 16218, 22126, 30195, 41226, 56299, 76849, 104883, 143147, 195404, 266776, 364175, 497092, 678503, 926164
OFFSET
0,6
COMMENTS
If presented in five rows a(5n) a(5n+1).. a(5n+4) each term is the sum of the previous term in the sequence and the partial sum of its row.
FORMULA
G.f.: (1-x^5)/(1-x-2*x^5+x^6).
a(n) = a(n-1) + 2*a(n-5) - a(n-6).
a(n) = 11*a(n-5) -45*a(n-10) +90*a(n-15) -90*a(n-20) +37*a(n-25)-a(n-30).
MATHEMATICA
CoefficientList[Series[(1 - x^5)/(1 - x - 2*x^5 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Mar 11 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^5)/(1-x-2*x^5+x^6)) \\ G. C. Greubel, Mar 11 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Nov 04 2005
STATUS
approved