login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113439
a(n) = a(n-1) + Sum_{k=1..floor(n/4)} a(n-4k), with a(0)=1.
7
1, 1, 1, 1, 2, 3, 4, 5, 8, 12, 17, 23, 34, 50, 72, 101, 146, 212, 306, 436, 627, 905, 1305, 1871, 2689, 3872, 5577, 8014, 11521, 16576, 23858, 34309, 49337, 70968, 102108, 146868, 211233, 303832, 437080, 628708, 904306, 1300737, 1871065, 2691401
OFFSET
0,5
COMMENTS
If presented in four rows a(4k), a(4k+1), a(4k+2) and a(4k+3), each term is the sum of the previous term in the sequence and the partial sum of its row; see Example section.
FORMULA
a(n) = a(n-1) + 2*a(n-4) - a(n-5).
a(n) = 9*a(n-4) - 28*a(n-8) + 38*a(n-12) - 20*a(n-16) +a(n-20).
G.f.: (1-x^4)/(1-x-2*x^4+x^5).
EXAMPLE
From Jon E. Schoenfield, Mar 11 2017: (Start)
Table of values T(j,k) = a(4k+j) in 4 rows:
.
j | k=0 1 2 3 4 5 6 7
----+--------------------------------------------------
0 | 1 2 8 34 146 627 2689 11521 ...
1 | 1 3 12 50 212 905 3872 16576 ...
2 | 1 4 17 72 306 1305 5577 23858 ...
3 | 1 5 23 101 436 1871 8014 34309 ...
.
T(2,4) = T(1,4) + T(2,0) + T(2,1) + T(2,2) + T(2,3)
306 = 212 + 1 + 4 + 17 + 72
(End)
MATHEMATICA
CoefficientList[Series[(1 - x^4)/(1 - x - 2*x^4 + x^5), {x, 0, 50}], x] (* G. C. Greubel, Mar 11 2017 *)
LinearRecurrence[{1, 0, 0, 2, -1}, {1, 1, 1, 1, 2}, 50] (* Harvey P. Dale, Nov 10 2019 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^4)/(1-x-2*x^4+x^5)) \\ G. C. Greubel, Mar 11 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Nov 04 2005
STATUS
approved