login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017833
Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
1
1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 13, 18, 23, 31, 43, 60, 81, 109, 148, 203, 278, 378, 513, 698, 953, 1300, 1770, 2408, 3280, 4471, 6093, 8298, 11300, 15393, 20973, 28573, 38920, 53013, 72216, 98381, 134021
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into parts 4, 5, 6, 7, 8, 9, 10 and 11. - Ilya Gutkovskiy, May 25 2017
LINKS
FORMULA
a(n) = a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) for n>10. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[4, 11]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
LinearRecurrence[{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4}, 50] (* Harvey P. Dale, Jul 05 2022 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11))); // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A105859 A200445 A255362 * A114044 A351724 A113444
KEYWORD
nonn,easy
AUTHOR
STATUS
approved