login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
1

%I #20 Sep 08 2022 08:44:43

%S 1,0,0,0,1,1,1,1,2,3,4,5,6,9,13,18,23,31,43,60,81,109,148,203,278,378,

%T 513,698,953,1300,1770,2408,3280,4471,6093,8298,11300,15393,20973,

%U 28573,38920,53013,72216,98381,134021

%N Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).

%C Number of compositions (ordered partitions) of n into parts 4, 5, 6, 7, 8, 9, 10 and 11. - _Ilya Gutkovskiy_, May 25 2017

%H Vincenzo Librandi, <a href="/A017833/b017833.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1,1,1,1,1,1,1,1).

%F a(n) = a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) for n>10. - _Vincenzo Librandi_, Jun 27 2013

%t CoefficientList[Series[1 / (1 - Total[x^Range[4, 11]]), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 27 2013 *)

%t LinearRecurrence[{0,0,0,1,1,1,1,1,1,1,1},{1,0,0,0,1,1,1,1,2,3,4},50] (* _Harvey P. Dale_, Jul 05 2022 *)

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11))); // _Vincenzo Librandi_, Jun 27 2013

%K nonn,easy

%O 0,9

%A _N. J. A. Sloane_.