login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113450
Difference between the square root of n-th square triangular number and n-th lambda number given by the recurrence f(n) = 2f(n-1) + f(n-2), f(1) = 1, f(2)= 2.
1
0, 4, 30, 192, 1160, 6860, 40222, 235008, 1371120, 7994836, 46605438, 271656000, 1583374520, 9228697244, 53789065150, 313506312192, 1827250301280, 10649999100580, 62072753005662, 361786539945408, 2108646537394280
OFFSET
1,2
FORMULA
a(n) = A001109(n) - A000129(n). - R. J. Mathar, Feb 08 2008
From G. C. Greubel, Mar 11 2017: (Start)
a(n) = 8*a(n-1) - 12*a(n-2) - 4*a(n-3) + a(n-4).
G.f.: (2*x^2)*(2-x) / ((1-2*x-x^2)*(1-6*x+x^2)). (End)
MAPLE
A001110 := proc(n) coeftayl( x*(1+x)/(1-x)/(1-34*x+x^2), x=0, n) ; end: A001109 := proc(n) sqrt(A001110(n)) ; end: A000129 := proc(n) coeftayl( x/(1-2*x-x^2), x=0, n) ; end: A113450 := proc(n) A001109(n) - A000129(n) ; end: seq(A113450(n), n=1..40) ; # R. J. Mathar, Feb 08 2008
MATHEMATICA
LinearRecurrence[{8, -12, -4, 1}, {0, 4, 30, 192}, 50] (* or *) CoefficientList[Series[(2*x^2)*(2-x)/((1-2*x-x^2)*(1-6*x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Mar 11 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec((2*x^2)*(2-x)/((1-2*x-x^2)*(1-6*x+x^2)))) \\ G. C. Greubel, Mar 11 2017
CROSSREFS
Cf. A113449.
Sequence in context: A115867 A057416 A089154 * A344399 A268218 A272493
KEYWORD
easy,nonn
AUTHOR
K. B. Subramaniam (subramaniam_kb05(AT)yahoo.co.in), Nov 02 2005
EXTENSIONS
Corrected and extended by R. J. Mathar, Feb 08 2008
STATUS
approved