|
|
A113453
|
|
Triangle giving maximal permanent P(n,k) of an n X n lower Hessenberg (0,1)-matrix with exactly k 1's for 2 <= n <= k <= 2n, read by rows.
|
|
5
|
|
|
1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 2, 2, 4, 4, 1, 1, 2, 2, 4, 4, 8, 1, 1, 2, 2, 4, 4, 8, 8, 1, 1, 2, 2, 4, 4, 8, 8, 16, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for rows 2 to 50, flattened
D. D. Olesky, B. L. Shader and P. van den Driessche, Permanents of Hessenberg (0,1)-matrices, Electronic Journal of Combinatorics, 12 (2005) #R70.
B. Shader Table of known values of P(n,k) for n<=12.
|
|
FORMULA
|
P(n, k) = 2^(floor((k-n)/2)), if n <= k <= 2n.
|
|
MATHEMATICA
|
Table[2^(Floor[(k - n)/2]), {n, 2, 51}, {k, n, 2*n}] // Flatten (* G. C. Greubel, Mar 11 2017 *)
|
|
PROG
|
(PARI) for(n=2, 25, for(k=n, 2*n, print1(2^(floor((k-n)/2)), ", "))) \\ G. C. Greubel, Mar 11 2017
|
|
CROSSREFS
|
Cf. A034856, A113452, A113453, A113454, A113455.
Sequence in context: A184848 A184720 A054526 * A245851 A230596 A307079
Adjacent sequences: A113450 A113451 A113452 * A113454 A113455 A113456
|
|
KEYWORD
|
easy,nonn,tabf
|
|
AUTHOR
|
Bryan Shader (bshader(AT)uwyo.edu), Jan 07 2006
|
|
STATUS
|
approved
|
|
|
|