login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344399
a(n) = 4^n*binomial(n - 1/2, -1/2)*(n^2 + 1).
0
1, 4, 30, 200, 1190, 6552, 34188, 171600, 836550, 3986840, 18660356, 86062704, 392102620, 1768102000, 7902970200, 35056559520, 154477660230, 676745803800, 2949418972500, 12794985495600, 55276458056820, 237909980502480, 1020487997404200, 4363718285628000
OFFSET
0,2
FORMULA
a(n) = [x^n] (20*x^2 - 6*x + 1) / (1 - 4*x)^(5/2).
a(n) = a(n-1)*(-2 + 4*n - 2*n^2 + 4*n^3) / (2*n - 2*n^2 + n^3) for n > 0.
MAPLE
aList := proc(len) local gf, ser;
gf := (20*x^2 - 6*x + 1) / (1 - 4*x)^(5/2): ser := series(gf, x, len+2):
seq(coeff(ser, x, n), n = 0..len) end: aList(23);
MATHEMATICA
Table[4^n Binomial[n-1/2, -1/2](n^2+1), {n, 0, 30}] (* Harvey P. Dale, Jun 20 2021 *)
CROSSREFS
Sequence in context: A057416 A089154 A113450 * A268218 A272493 A246151
KEYWORD
nonn
AUTHOR
Peter Luschny, May 17 2021
STATUS
approved