login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344397
a(n) = Stirling2(n, floor(n/2)) * floor(n/2)!.
1
1, 0, 1, 1, 14, 30, 540, 1806, 40824, 186480, 5103000, 29607600, 953029440, 6711344640, 248619571200, 2060056318320, 86355926616960, 823172919528960, 38528927611574400, 415357755774998400, 21473732319740064000, 258323865658578720000, 14620825330739032204800
OFFSET
0,5
FORMULA
a(n) = [x^(floor(n/2))] F(n, x), the middle coefficient of the Fubini polynomial.
a(n) = Sum_{k=0..n/2} (-1)^k*binomial((2*n - 1)/4 + (-1)^n/4, k)*((2*n - 1)/4 + (-1)^n/4 - k)^n.
MAPLE
a := n -> add((-1)^k*binomial((2*n-1)/4 + (-1)^n/4, k)*((2*n-1)/4 + (-1)^n/4 - k)^n, k = 0..n/2):
# Alternative, via Fubini recurrence:
F := proc(n) option remember; if n = 0 then return 1 fi;
expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
a := n -> coeff(F(n), x, iquo(n, 2));
seq(a(n), n = 0..22);
MATHEMATICA
a[n_] := StirlingS2[n, Floor[n/2]] * Floor[n/2]!; Array[a, 23, 0] (* Amiram Eldar, May 22 2021 *)
PROG
(SageMath)
def a(n): return stirling_number2(n, n//2) * factorial(n//2)
print([a(n) for n in range(23)])
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Peter Luschny, May 21 2021
STATUS
approved